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Abstract. A time-independent theoretical and numerical analysis of an optical bistable model of two-level
atoms in a ring cavity, driven by a coherent field and in contact with a squeezed vacuum field is presented
in the two cases of absorptive and dispersive optical bistability (OB). In the former case, a suitable choice
of the phase of the squeezed vacuum field reduces the threshold for OB to occur compared with the normal
vacuum case. In the latter case, regions of OB are identified as one or two disconnected simple closed
curves depending on the cooperation parameter C

>
< Cmax

crit : Cmax
crit is the maximum possible value of the

critical value of C at fixed values of the squeezed vacuum field parameters. Phase switching effects between
different (output) states of the system is investigated in detail. In the absorptive case, one- or two-way
optical switching is possible depending on C

>
< Cmax

crit . We also present results which demonstrate more
complicated switching behaviour in the dispersive case.

PACS. 42.65.Pc Optical bistability, multistability, and switching – 42.65.Sf Dynamics of nonlinear optical
systems, optical instabilities and optical chaos and complexity, and optical spatio-temporal dynamics

1 Introduction

Dynamical study of non-linear optical systems is an active
research area for its fundamental aspect as well for its po-
tential technological applications in the real world [1]. A
particular example is the phenomena of optical bistabil-
ity (OB) which has potential applications in optical com-
munications and the quantum processing of information
(e.g. [1–4]). OB is caused by the non-unique response of
an optical feedback system for which there are two possi-
ble stable outputs from the system. The phenomenon has
been examined, both theoretically and experimentally, in
various optical cavity configurations ([1–6]; and the exten-
sive references therein). On the other hand “squeezing”
of the electromagnetic field vacuum fluctuations, where
the quantum fluctuations in one-quadrature phase of the
field are less than the usual vacuum fluctuations, has been
realised for some years (for latest experimental develop-
ments see [7,8] and see [9,10] for intensive literature on the
properties of squeezed light and its use to prope non-linear
optical systems). Of relevant interest is the interaction of
2-level atomic systems with a broad-band squeezed vac-
uum field which induces two different decay rates for the
quadrature components of the atomic polarization, and
also broadens the decay rate of the atomic population [11].

Theoretical investigation of (a single mode) OB system
in a ring cavity configuration (Fig. 1) where the atomic
system is in interaction with a squeezed vacuum input field

Fig. 1. The ring cavity configuration.

have been given (to our knowledge) in [12–14]. In [12] the
degradation of the bistable behaviour due to the squeezed
vacuum parameters was examined in the absorptive case
(no cavity detuning), while the authors of [13] have dis-
cussed the use of the squeezed light input field to pro-
duce a “switching effect” in an optical bistable system
by varying the phase of the squeezed light. The authors
of [14] have investigated an absorptive bistable system
(both cavity and atomic detunings are zero) in a ring cav-
ity (Fig. 1) where the squeezed vacuum beam is introduced
at the mirrorM2: this has the (experimental) advantage to
avoid phase mis-match and diffraction problems discussed
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in [12,13], and also to neglect the coupling between the
cavity field and the squeezed vacuum field.

In this two-part article we present the full theoreti-
cal and numerical analysis for an OB system of 2-level
atoms in a ring cavity where the atoms are coupled to the
squeezed vacuum field, injected at mirror M2 of Figure 1,
while the incident coherent field EI is injected at mirror
M1 (just as in [14]) and it is detuned to both cavity and
atoms. In the first part of this article we present a steady
state analysis of the input-output field relationship, iden-
tify the bistability regions, and examine the “phase switch-
ing” effect in both the absorptive and dispersive cases,
thus extending and complementing the results of [12–14].
The second part of the paper is concerned with the sta-
bility analysis and the chaotic behaviour of the system
mentioned.

2 The model equations

We consider a single-mode ring cavity (Fig. 1) which con-
tains an atomic medium of length L, with an input field EI

at the mirror M1, a squeezed vacuum field is introduced
at the mirror M2 and the transmitted field is ET. The two
mirrors M1 and M2 have reflectivity R and transmitivity
T (= 1− R) while the mirrors M3 and M4 have 100% re-
flectivity. The total length of the cavity is L = 2(`+L) and
z is the position within the atomic medium. The bound-
ary conditions (BC) for the single-mode (c-number) cavity
field E(z, t) at Z = 0, L are of the form [16]

E(0, t) =
√
TEI(t) +RE(L, t−∆t) exp(−iθT ) (1a)

E(L, t) = ET(t)/
√
T . (1b)

Here ∆t = (2` + L)/c, is the time for light to travel
from M2 to M1, c is the velocity of light in vacua,
θ = (ωc − ωd)/(c/L) is the normalised cavity detuning
parameter, ωc is the frequency of the cavity mode and ωd

is the frequency of the incident field. The decay rate for
the cavity is defined by k = c/L.

The atomic medium is composed of a system of ho-
mogeneously broadened 2-level atoms of transition fre-
quency ωo and atomic density no. As stated previously
the atoms are coupled to the single-mode cavity field
and to the squeezed vacuum field where the introduc-
tion of both fields at different ports means we can ignore
the coupling between them. Starting from a Hamiltonian
model that describe the above interaction it is shown that
(Appendix A) the model equations of motion for the mean
values of the cavity field α ≡ E(z, t), the atomic po-
larization components J±(z, t) and the atomic popula-
tion Jz(z, t) are expressed by the c-number Maxwell-Bloch
equations,

∂α

∂t
+ c

∂α

∂z
= −gnoJ− (2a)

∂J−
∂t

= −GJ− + 2gαJz − γMJ+ =
(
∂J+

∂t

)∗
(2b)

∂Jz
∂t

= −γ‖Jz −
1
2
γ − g(αJ+ + α∗J−). (2c)

The notations are: γ is the A-coefficient, γ‖ = γ(1 + 2N),
G = (1/2)γ‖ + iγδ where δ = (ωo − ωd)/(γ/2) is the nor-
malised atomic detuning and g is the coupling constant
between the atoms and the cavity field. The squeezed vac-
uum field parameters areN and M with |M |2 ≤ N(N+1):
N being the average photon number of the squeezed field
at the atomic resonance frequency ωo, and M is the mea-
sure of the correlations between pairs of photons (see ap-
pendices for their definitions in terms of the creation and
annihilation field operators). For simplicity we will assume
perfect squeezing, so that |M | =

√
N(N + 1).

In this paper (Part I) we are concerned with the steady
behaviour of the model equations (2) with the boundary
conditions (1). In the steady state, where the time deriva-
tives in equations (2) are set to zero, and by integrating
equations (2a) w.r. to z and using the BC of equations (1)
we get the following equation,

y = x(1 + iθ) + CJ̄−, (3)

where y = 2g
√
TEI/γ and x = 2g

√
TET/γ are the nor-

malised input and output field amplitudes respectively
and C = 2

√
2g2no/(γk) is the cooperative parameter

(without loss of generality, y is taken to be real). Note that
to reach equation (3) we have used that e−iθT ≈ 1 − iθT
for T � 1. Within the (spatial) mean field limit [16],
valid for T � 1, we set αJ±,z ≈ αJ±,z where J− =
L−1

∫ L
0
J−(z)dz, etc., define spatial average quantities, the

steady state solutions of equations (2b, 2c) for the atomic
variables are given by

Jz =
−1

2(1 + 2N)
(1 + δ2)

[
1 + δ2 + b1|x|2

]−1
(4)

J− =
−1√

2
x(b1 − ib2)

[
1 + δ2 + b1|x|2

]−1
(5)

where

b1 = 1− 2|M |
1 + 2N

cosφ,

b2 =
δ + 2|M | sinφ

1 + 2N
· (6)

Here φ = φs − 2φf is the relative phase of the squeezed
vacuum field, where α = |α| exp(iφf). With (5) substi-
tuted into (3) we get the characteristic input-output field
amplitudes relation,

y = x

[
1 + iθ + 2C

b1 − ib2
1 + δ2 + b1|x|2

]
. (7)

In the normal vacuum case (N = M = 0) equation (7)
reduces to the relation y = x[1+ 2C/(1 + |x|2)] in the
absorptive case (θ = δ = 0) [17], while in the dis-
persive case (θ, δ 6= 0) equation (7) reduces to the
relation y = x[1 + iθ + 2C(1− iδ)/(1 + δ2 + |x|2)] [18,19].
Also, the relation (7) is identical to the relation derived,
within the mean field limit, for a Fabry-Perot (FP) cavity
configuration [20] using Fleck’s type of harmonic trun-
cation for treating the standing wave effects [21] (a dif-
ferent type of treatment for the standing wave effects
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in a FP cavity, like McCall’s type of spatial average [22],
gives a “quantitatively” different state input-output rela-
tion [20]).

The conditions for the bistable behaviour according to
equation (7) with (N , M 6= 0) are analysed next.

3 Conditions for bistability

Equation (7) gives the steady-state intensity transmission
function,

Y =
X

(1 + δ2 + b1X)2

[
(1 + δ2 + b1(X + 2C))2

+(θ(1 + δ2 + b1X)− 2Cb2)2
]

(8)

where Y = y2 and X = |x|2 are the transmitted and input
field intensities respectively.

The input intensity Y has a qualitatively different
shape for values of C above or below a critical value of
C. Below this critical value of C, Y is a monotonic func-
tion of X so that X is a single-valued function of Y . Above
this critical value of C, Y has a maximum and a minimum
separated by a point of inflexion, at which d2Y/dX2 = 0,
and where

Xinf = D2
D2(1− θD1) + 2C(1 +D2

1)
D2(θD1 − 1) + C(1 +D2

1)
, (9)

with D1 = b2/b1, D2 = Do/b1 and Do = 1 + δ2.
In this case X is multivalued so that with a suitable

selection of the parameters of the system the steady-state
transmission plot of |x| as a function of y has the typical
bistable curve.

The conditions for bistability are [19]

Xinf > 0 (10a)

and (
dY
dX

)
Xinf

< 0 (10b)

where Xinf is given by (9). The first condition ensures
the inflexion point is within the physical region for which
X ≥ 0. The second condition ensures that the curve of Y
against X has a maximum and a minimum. It identifies
the values of the parameters for which optical bistability
is possible. According to (9), the second condition requires
that f(θ, δ) > 0 where

f(θ, δ) = [2C(1 +D2
1) + 2D2(θD1 − 1)]3

− 54CD2
2(1 +D2

1)2(1 + θ2), (11)

3.1 Absorptive case

When the atomic and cavity frequencies are equal to the
frequency of the driving field, that is, δ = θ = 0, con-
dition (10b) gives the critical value of C, Ccrit, at which
f(δ, θ) = f(0, 0) = 0, i.e.

[2Ccrit(1 +D2
1)− 2D2]3 − 54CcritD

2
2(1 +D2

1)2 = 0. (12)

The positive real root of (12) in conformity with (10a) is
found to be:

Ccrit =
D2

1 +D2
1

[
1 + 3

√
1 +D2

1 cos
(

1
3

tan−1(D1)
)]

.

(13)

In the normal vacuum (N = |M | = 0) Ccrit = 4, as first
shown by Bonifacio and Lugiato [17]. Otherwise Ccrit has
period 2π and is symmetric about φ = π so comments
will be restricted to the interval 0 ≤ φ ≤ π. The plot of
Ccrit, equation (13), as a function of N and φ is shown in
Figure 2a.

For fixed N , Ccrit has minimum and maximum values
at φ = π, 0 respectively given by

Cmin
crit = 4/

(
1 +

2
√

1 + 2N
1 + 2N

)
< 4 (14)

Cmax
crit = 4(1 + 2N)(1 + 2N + 2

√
N(N + 1)) > 4. (15)

Equation (14) means that in the absorptive case the
threshold for bistability in the squeezed vacuum case is
less than the threshold in the normal vacuum case (cf. [15]
and comments in the summary, Sect. 5).

For N � 1, Cmax
crit → 32N2 and Cmin

crit → 2, the smallest
possible value of Ccrit. In the limit N →∞ and arbitrary
φ, equation (13) gives

(Ccrit)N→∞ =
3 cos((π − φ)/6)

2 sin(φ/2)
+

1
2
· (16)

This is a monotonic decreasing function of φ with a sin-
gularity at φ = 0. Numerically, (Ccrit)N→∞ = 4 at
φ ≈ 46.75◦. In Figure 2b the plot of the expression (13) for
Ccrit against φ shows that near φ = 0, Ccrit increases more
rapidly as N increases. Figure 2c shows the behaviour of
Ccrit versus N for various values of φ. If π/2 ≤ φ ≤ π,
Ccrit = 4 at N = 0 and decreases monotonically to a
value < 4, given by equation (16). If 0 ≤ φ < π/2, Ccrit

monotonically increases to a maximum before decreas-
ing monotonically to a value given by equation (16). This
analysis shows that when the atomic medium is coupled
to squeezed light and the phase of the squeezed light sat-
isfies the inequality π/2 ≤ φ ≤ π the critical value of the
cooperative parameter C is always reduced below that re-
quired in the ordinary vacuum but if 0 ≤ φ ≤ 46.75◦, Ccrit

is always greater than 4.
Finally in this section a few comments are made about

the input-output relationship of equation (8). The two
cases where φ = 0 and φ = π are of special interest
for then b2 = 0 and b1 = 1 ∓ 2|M |/(1 + 2N) and so
equation (8) reduces to

Y = X

(
1 +

2b1C
1 + b1X

)2

. (17)

Using the transformation Y1 = b1Y , X1 = b1X and C1 =
b1C, equation (17) takes the familiar form for the input-
output relation for absorptive optical bistability in the
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Fig. 2. (a) A 3-dimensional plot of Ccrit as a function of φ and
N . (b) Ccrit versus φ for N = 0 (normal vacuum), 0.1 and 0.3.
(c) Ccrit versus N for various values of φ.

Fig. 3. The transmitted field |x| versus the driving field y, for
N = 1, φ = π and different values of C.

normal vacuum [17], namely,

Y1 = X1

(
1 +

2C1

1 +X1

)2

. (18)

Note that Y1, X1 and C1 are functions of N . Specifically,

C1 = C

(
1∓ 2

√
N(N + 1)
1 + 2N

)
(19)

for φ = 0, π respectively. According to (18) the critical
value of C1 is 4 [17]. Hence, in the squeezed vacuum case
and in the absorptive case, with N fixed the critical value
of C for φ = 0 is greater than that for φ = π. Figure 3
plots |x| against y for N = 1 and φ = π which shows
the critical case for bistability, C = 2.06, and a typical
bistable curve for C = 3.06. For these values of C and N
optical bistability is not physically possible if φ = 0.

3.2 Dispersive case

In this case either or both the atomic detuning δ and the
cavity detuning θ are non-zero. By choosing certain val-
ues of the parameters C and N the condition f(δ, θ) = 0,
equation (10b), together with the restriction Xinf > 0,
equation (10a), defines a region in the parameter space
(f, δ, θ) within which optical bistability can be found. The
regions were obtained by plotting the contour f(δ, θ) = 0
in the (δ, θ) plane. Next we comment on the general be-
haviour of these contours.

For values of C � 1 and small N it can be shown that
(see Appendix B) when |θ| � 1, |δ| � 1 the boundary of
the bistability region is approximated by one of the two
hyperbolas

θ(δ − δo) =
−C

4(1 + 2N)
,

θ(δ − δo) =
2C

(1 + 2N)
(20)
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Fig. 4. (a) The contour surrounding the bistable region for
C = 100, N = 0.1 and φ = 0. (b)The asymptotic contours (of
Eq. (20)).

where δo = 2|M | sinφ. Further, this boundary crosses the
θ-axis at the two points,

(δ±)θ=0 = 2|M | sinφ± C
√

4
27

(1 + 2N)−1 (21)

and crosses the line δ = −δo at the points

(θ±)δ=−δo = ±C
√

4
27

(
1− 2|M |

1 + 2N
cos(φ)

)
1 + δ2

o

· (22)

Figure 4 show the contours for C = 100, N = 0.1 and
φ = 0: Figure 4a plots the exact (numerical) contour, while
Figure 4b plots the asymptotic contours of equation (20),
valid for |θ|, |δ| � 1, and drawn between (δ±)θ=0 and
(θ±)δ=−δo .

Fig. 5. The two topologically distinct bistability regions in the
(δ, θ) plane.

The remaining comments in this section are based
upon the results of extensive numerical experiments sup-
plemented by the analysis of optical bistability in the
absorptive case. Our finding is that the region of op-
tical bistability is either enclosed by one or two dis-
connected simple closed curves. These two topologically
distinct cases are shown in Figure 5. If the region of bista-
bility is enclosed by a single simple contour as in Figure 5a
we will call this a type I region. We call the other topolog-
ically distinct region shown in Figure 5b a type II region:
in this case the two contours are centered in the first and
third quadrant of the (δ, θ) plane. We will show a sam-
ple of contours with N fixed but C and φ are varied. A
good guide to predicting the behaviour of the region of
bistability in the dispersive case is provided by the above
analysis in the absorptive case especially the plots of Fig-
ure 2b, showing the behaviour of Ccrit against φ for dif-
ferent values of N . Figure 6 shows one of these curves for
N = 0.1 cut by several horizontal lines where each line
corresponds to a fixed value of C. These lines can either:
lie above Cmax

crit (the maximum critical value of C), see line
(i) in Figure 6; cut the graph of Ccrit at a point close to
but just below Cmax

crit , as in line (ii) in Figure 6; or cut the
graph well below Cmax

crit as in line (iii) in Figure 6. Next,
we consider the behaviour of the bistability region as φ
and C vary using this Figure 6 as a guide.

For C fixed at a value greater than Cmax
crit , represented

by the line (i) in Figure 6, the bistability region is a type I
region enclosing the origin for all value of φ. For example
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Fig. 6. Ccrit versus φ for N = 0.1 (Cmax
crit = 8.944, Cmin

crit =
2.576).

Fig. 7. The bistability region with C = 20 and N = 0.1 for
φ = 0 and φ = π.

Figure 7 shows the behaviour of the bistability region with
C = 20 with N = 0.1 for φ = 0 and φ = π. The bistabil-
ity region for values of φ in between these values are very
similar and, as predicted in the absorptive case, always
enclose the region. As C decreases the bistability remains
of type I region until for a value of C < Cmax

crit this region
splits into a type II region. As C decreases further the re-
gion of bistability at φ = 0 remains of a type I region but
as φ increases this type I region changes into a type II re-
gion. Figure 8 shows the bistability regions for C = 8 and

Fig. 8. The bistability regions for C = 8 and N = 0.1 for
φ = 0, π/4 and π.

N = 0.1 for φ = 0, π/4 and π (the value of C = 8 is rep-
resented by the line (ii) of Fig. 6): at φ = 0 the bistability
region is enclosed by two separate simple closed contours.
As φ increases region A grows and region B shrinks until
at φ ≈ 0.3889 rad it disappears. For φ > 0.3899 rad the
bistability region encloses the origin, in agreement with
the results in the absorptive case. The size of the bistabil-
ity region grows as φ increases and moves more into the
third quadrant of the (δ, θ) plane and the region becoming
more symmetrically placed about the line δ = θ as φ→ π.

Eventually as C decreases the type I region disappears
but a type II bistability region remains for some interval
φ1 ≤ φ ≤ π. As C decreases further φ1 decreases until
C = Cmin

crit there is no region of bistability: Cmin
crit is the

minimum value of Ccrit. Figure 9 shows the bistability
regions for C = 5 and N = 0.1 for φ = π/6, π/4, π/2 and
π (this value of C is represented by line (iii) of Fig. 6). For
0 ≤ φ ≤ 0.3420 rad there is no region of bistability. For
φ > 0.3420 rad the region of bistability is a single closed
region. For φ ≈ 0.8407 rad this region encloses the region.
The size of the bistability region grows as φ increases and
moves more into the third quadrant of the δ−θ plane and
becomes more symmetrical about the line δ = θ as φ→ π.

Finally, for C = 4 (the critical value of C in the normal
vacuum for the absorptive case [17]) and for φ = 0 there is
no region of bistability in the (δ, θ) plane. But for π/4 ≤
φ ≤ π and arbitrary N , there is a region of bistability-
unlike the normal vacuum case [18,19]. In this case the
bistable contour includes the origin and expands as N
increases rapidly converging to the contour for the case
N →∞ (Fig. 10).
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Fig. 9. The bistability regions for C = 5 and N = 0.1 and
various values of φ.

Fig. 10. The bistability regions for C = 4, φ = π/3 and various
values of N .

4 Phase switching effects: isolas
and mushrooms

When the coherent input field Y is kept fixed the authors
of [14] have shown that in the dispersive case the output
field can switch from the lower to the higher transmission
state and vice versa by varying the phase of the squeezed
vacuum. Here we examine in detail the same and similar
effects in both absorptive and dispersive OB.

4.1 Absorptive case

For convenience, the contour plots showing the variation
of |x| with φ will be referred to as switching diagrams. As

φ varies the system can switch between two different phys-
ical states. Our numerical experiments show that the pos-
sible switching behaviour depends on whether C

>
< Cmax

crit .
First, we present results for C = 20, N = 0.1. In this

case C > Cmax
crit . Figure 11a shows the 3-dimensional plot,

using equation (8), of the driving field y as a function of
the transmitted field |x| and the phase φ, in the absorptive
case (θ = 0, δ = 0). The contours of this plot at the fixed
values of the input y = 13 and 18 are given in Figures 11c
and 11d showing an isola structure for the dependence of
the output field on the squeeze phase parameter φ. The
switching diagrams in Figure 11c was obtained by fixing
the input field at |y| = 13 in the region of the local min-
imum (Fig. 11a). In this case at φ = 0 the output field
|x| has the values corresponding to either of the points P1

and P2 marked on the input-output curve of Figure 11b.
P1 is on the upper branch of the OB curve and P2 on its
lower branch. Figure 11c shows how these points move as φ
varies. As φ increases P1 moves along curve I in Figure 11c
staying on the stable upper branch of an OB curve until
it reaches the point labeled A. Here the system becomes
unstable and P1 jumps to the stable lower branch of the
OB curve. As φ increases further P1 remains on a stable
lower branch of the input-output curves moving along the
curve labeled II in Figure 11c. The movement of the point
P2 as φ increases is simple: it remains on the stable lower
branch of an OB curve moving smoothly along curve II of
Figure 11c. Note that there is only the possibility of one-
way switching, a switch-down from curve I to curve II,
since if the system is on curve II it will stay on this curve
for any variation of φ.

However, for a larger fixed input value y, close to
the local maximum value of y, one-way switching from
the lower branch to the upper branch is possible. This
is demonstrated in Figures 11b and 11d for y = 18. At
φ = π/2 the output field |x| can again take either of two
values corresponding to the point P ′1 on the upper branch
of the OB curve in Figure 11b and P ′2 on the lower branch.
As φ varies monotonically P ′2 moves along the lower curve
in Figure 11d, staying on the stable branch of an OB
curve until the system becomes unstable and switches up
to the upper branch in Figure 11d. For the other possi-
bility, corresponding to the point P ′1 on the upper curve
of Figure 11d, the output field |x| is almost unchanged
for any variation of φ. This behaviour means that in this
absorptive case only one-way switching is possible, either
switching up, as in Figure 11d or down as in Figure 11c.
Other switching behaviour is possible in the absorptive
case. Generally, switching will occur at values of y close
to the local maximum or minimum of the 3-dimensional
plot of y as a function of |x| and φ where both N and C
are kept fixed.

So far, we have considered the case of C > Cmax
crit where

optical bistability is possible for all values of φ and the
switching behaviour is of the form shown in Figures 11c
and 11d. However if C < Cmax

crit the switching behaviour
shown in Figure 11c is not possible since the analysis in
the absorptive case shows that there is no optical bista-
bility if 0 ≤ φ ≤ φ1, where φ1 depends on the value of C
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Fig. 11. (a) The driving field y versus the transmitted field |x| and φ in the absorptive case. (b) The transmitted field |x| versus
the driving field y for φ = 0, π/2. (c) The switching diagram: |x| against φ at y = 13 (isola structure). (d) As (c) but for y = 18.

and N . For example, if C = 8 and N = 0.1, C < Cmax
crit

so the switching behaviour of Figure 11d is impossible.
However, other switching behaviour is possible. For these
values of C and N , Figure 12 shows the 3-dimensional
plot of y against |x| and φ. If the input is fixed at
y = 7.8 and at y = 8 the switching diagrams are shown in
Figures 12b and 12c. Both figures indicate two-way switch-
ing. In Figure 12b, at φ = 0 the output field |x| corre-
sponds to a single point Q on the stable upper branch of
an OB curve. As φ increases Q moves continuously along
the upper part of the curve in Figure 12b, until at the
point A the system becomes unstable. Then Q jumps to
the stable lower branch of an OB curve, moving along
the lower part of the curve in Figure 12b. As φ increases
further Q moves on the lower part of the curve until at
B the system becomes unstable again so the point jumps
from the lower curve to the upper curve. If y is increased
slightly to 8, Figure 12c shows the switching behaviour of
the system. Compared to Figure 12b the new feature is
the closed contour symmetrically placed around φ = π. If

initially the state of the system is represented by a point
on the upper part of this closed contour, for example at
R, the system is on the upper stable branch of an OB
curve. As φ changes monotonically this point will move
along this contour until at either the point C or D the
system becomes unstable so that the point jumps to the
lower curve I in Figure 12c.

4.2 Dispersive case

In this case, where δ, θ 6= 0, the switching diagram still
show some of the features seen in the absorptive case.
For example, Figure 13 shows the switching diagram for
C = 20, N = 0.1, δ = 0.1 and θ = 0.1. It is very simi-
lar to the switching diagram of Figure 12b except that it
is not symmetrical about φ = π. Extra feature is seen in
Figure 14 where the switching diagram shows a mushroom-
shape structure so that two-way switching is possible-as
first reported in [14]. Here the points S and T on the
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Fig. 12. (a) As in Figure 11a but for C = 8. (b) The switching
diagram at y = 7.8. (c) As (b) but for y = 8.

Fig. 13. Switching diagram for C = 20, N = 0.1 in the dis-
persive case (asymmetric isola structure).

switching diagram of Figure 14c correspond to the points
S and T on the input-output diagram for |φ| = 2.0 rad of
Figure 14b. As φ increases the point T moves along the
lower part of the mushroom-shaped curve in Figure 14c
until at the point A the system becomes unstable and
jumps to the point A′ on the upper part of the curve.
As φ increases further the system moves along the upper
part of the mushroom curve until it again becomes unsta-
ble and jumps down at B to the stable state represented
by the point B′ in Figure 14c. We have checked that by nu-
merical experiments that this type of switching behaviour
is possible for most systems with C � 1, δ > 1 and θ� 1.

5 Summary

We have presented a steady state analysis of the effects
induced by a squeezed vacuum field on optical bistability
in a ring cavity. Based on a set of Maxwell-Bloch equa-
tions derived (Appendix A) for a system of 2-level atoms
within the usual Born, Markov and rotating wave approxi-
mations, our investigation is presented within the (spatial)
mean field limit. In the absorptive case the smallest pos-
sible critical value of the cooperative parameter Cmin

crit is
2 for (relative) squeeze phase φ = π in comparison with
the value Ccrit = 4 in the normal vacuum case [17]. In
general, for π/2 < φ ≤ π, Ccrit < 4 but for 0 < φ . 46.5◦,
Ccrit > 4. In the dispersive case, where both the atomic
and cavity detuning (δ, θ) 6= 0, the region of bistability in
the (δ, θ) plane are identified analytically for C � 1 and
for |δ|, |θ| ≥ 1. Our extensive numerical investigation, and
in conformity with the analytical results for the absorp-
tive case, shows that the bistable region in the (δ, θ) plane
is either one or two disconnected simple closed curves, de-
pending on the values of C > Cmax

crit , C just below Cmax
crit

and C � Cmax
crit , (Cmax

crit is the maximum possible value of
Ccrit).
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Fig. 14. (a) As Figure 11a but in the dispersive case. (b) The
transmitted field |x| versus the driving field y for φ = 2 rad. (c)
The switching diagram, |x| against φ (mushroom structure).

We have also investigated the utilization of the phase
of the squeezed field to switch the system between a high
and a low transmission state. Our numerical and theoret-
ical investigations show that in the absorptive case both
one-way and two-way switching is possible. The type of
switching depends on whether the cooperative parame-

ter C
<
> Cmax

crit . If C > Cmax
crit the one-way switching be-

haviour (isola structure) of Figures 11c and 11d is pos-
sible. If C < Cmax

crit the-two way switching behaviour of
Figures 12b and 12c is observed. In the dispersive case
a two-way switching behaviour is observed in the form
of an asymmetrical isola structure, Figure 13, or in the
form of mushroom-type structure [14], Figure 14c. The
steady state behaviour of the isola and mushroom struc-
ture exhibited here resembles that which occurs in some
real biological reactions [23].

In the following paper (Part II), we investigate the
dynamical behaviour of the model Maxwell-Bloch equa-
tions, equations (2), concerning stability, self-pulsing and
chaotic behaviour.

Appendix A

Here we present a derivation of the model Maxwell-Bloch
equations, equations (2). We begin with the Hamiltonian
form for an extended system of Na homogeneously broad-
ened 2-level atoms of transition frequency ωo coupled to
the quantised radiation field in electric dipole approxima-
tion [24]

H = Ho +H1 (A.1)

where

Ho =
∑
k,λ

~ωka†k,λak,λ +
1
2
~ωo

∫
V

σz(x, t)dx, (A.2)

is the Hamiltonian of the unperturbed system of field and
atoms,

H1 = −
∫
V

p(x, t).e(x, t)dx. (A.3)

is the interaction Hamiltonian. The atomic operator den-
sities are

σz(x, t) =
Na∑
i=1

σiz(t)δ(x− xi)

p(x, t) = pû
Na∑
i=1

σix(t)δ(x− xi) (A.4)

where xi is the site of atom i and xi ∈ V (the volume of
the macroscopic region, i.e. the cavity), p is the magnitude
of the atomic dipole matrix element and û is a unit vector
in the direction of p. The operators (σix, σ

i
y, σ

i
z) = σi

are the spin-(1/2) Pauli matrices for each atom labelled i,
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and each satisfies an su(2) Lie algebra – which means that
the operator densities satisfy the commutation relations

[σx(x, t), σy(x′, t)] = 2iσz(x, t)δ(x− x′) (A.5)

together with cyclic permutations of x, y and z.
The field operator e(x, t) is given by

e(x, t) = i
∑
k,λ

g
k,λ

(
ak,λ(t)eik ·x − a†k,λ(t)e−ik ·x

)
(A.6)

where g
k,λ

=
√

2π~ωk/Vo ε̂k,λ and ε̂k,λ is a unit polarisa-
tion vector for mode k with polarisation index λ = 1, 2.
The quantisation volume Vo (→ ∞) contains the macro-
scopic region V and the atoms lie only in V . The field
operators ak,λ and a†k,λ satisfy the relation[

ak,λ(t), a†k′,λ′(t)
]

= δk,k′δλ,λ′ . (A.7)

The Heisenberg operator equations of motion according to
the Hamiltonian (A.1) imply the following operator Bloch
equations for the atomic operators,

σ.+(x, t) = iωoσ+(x, t) + ip~−1û ·e(x, t)σz(x, t)

=
(
σ.−(x, t)

)† (A.8a)

σ.z(x, t) = 2ip~−1û ·e(x, t) (σ+(x, t)− σ−(x, t)) (A.8b)

where σ± = 1
2 (σx ± iσy) and we have used the fact that

field and matter operators commute at the same time.
Within the normally ordered prescription for placing the
field operator e(x, t) ≡ e+(x, t) + e−(x, t) with respect to
the atomic operators σ±,z(x, t) (i.e. the negative and pos-
itive frequency parts e∓(x, t) are placed to the left and
right of the atomic operators, respectively) the operator
Bloch equations (A.8) take the form,

σ.+(x, t)− iωoσ+(x, t) = ip~−1û ·e−(x, t)σz(x, t) (A.9)

σ.−(x, t) + iωoσ−(x, t) = −ip~−1û ·σz(x, t)e+(x, t)
(A.10)

σ.z(x, t) = −2ip~−1û · [e−(x, t)σ−(x, t)

− σ+(x, t)e+(x, t)]. (A.11)

In equations (A.9, A.10) the terms in σz(x, t)e+(x, t) and
e−(x, t)σz(x, t) are discarded within the rotating wave
approximation (r.w.a.). Similarly, the terms in e−(x, t)
σ+(x, t) and σ−(x, t) e+(x, t) are dropped in (A.11).

From the Hamiltonian (A.1) it can be shown that
the total field operator e(x, t), equation (A.6), satisfies
Maxwell’s wave equation as an operator form driven by
−4πc−2 ∂2p(x, t)/∂t2 [25,26]. The equivalent integral form
of the Maxwell’s wave equation is given by [25,26]

e(x, t) = eo(x, t) +
∫ t

0

dt′
∫
V

F(x, x′; t− t′) · p(x′, t′)dx′

(A.12)

in which eo(x, t) = e+
o (x, t) + e−o (x, t) is the free field op-

erator where e±o (x, t) are given by

e±o (x, t) = ±i
∑
k,λ

g
k,λ

{
ak,λ(0)
a†k,λ(0)

}
e∓i(ωkt−k ·x). (A.13)

The second rank tensor photon propagator (or Green’s
function) F is given by the causal form (t > t′) (cf. [27])

F(x, x′; t− t′) = (∇x∇x −∇2U)δ(t− t′ − rc−1)r−1

(A.14)

where r = |x−x′| 6= 0 and U is the unit tensor. Its Fourier
transform is given by ([25–29])

F(x, x′;ω) = (∇∇+ (ω/c)2U)eiωrc−1
r−1. (A.15)

In the extended system, the operator field e(xi, t) =
e+(xi, t) + e−(xi, t) drives the atom i at site xi where
the positive and negative frequency parts e±(xi, t) are ex-
pressed as the sum of three parts ([28]; see also [24,30]),

e±(xi, t) = e±o (xi, t) + e±self(xi, t) + e±int(xi, t) (A.16)

where the free field operators e±o are given by (A.13),
while the self (reaction) field operators e±self(xi, t) are
given either within the integral term in (A.12) as

∫
p(x).

F(x, x′;ω)δ(x−x′)dx′ [25,27,28] or within operator reac-
tion field theory [31,32] (up to ignoring terms involving
the vacuum level shifts) by

e±self(xi, t) = ±i
2
3

(ωo/c)3pσi±(t). (A.17)

The remaining operator terms e±int(xi, t) in (A.16) are the
internal field operators acting on atom i at xi due to all
the atoms j 6= i. The total internal field eint(x, t) car-
ries the propagating field through the macroscopic system
i.e. the cavity. In view of the inclusion of the self field
in (A.16), the total internal propagating field eint(x, t)
has the form of the integral term in (A.12) but with
x 6= x′. It is this propagating field (not the free or self
fields) that satisfies Maxwell’s wave equation driven by
−4πc−2∂2p(x, t)/∂t2 (although cf. [33], one should really
define a macroscopique Maxwell field in the theory which
admits x = x′). Up to the neglect of slow retardation
effects and within slowly varying approximation in time
O(ω−1

c ) for the atomic operators σ±(x, t) the total internal
propagating fields at a single frequency, say, ωc, e±int(x, t),
take the form [24,26]

e±int(x, t) = p

∫
V

(x 6=x′)

dx′σ∓(x′, t)û ·
{

F(x, x′;ωc)
F∗(x, x′;ωc)

.

(A.18)

Now, with the self fields given by (A.17) and the use of the
algebraic relations for single atoms: σi+(t)σiz(t) = −σi+(t),
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σiz(t)σ
i
−(t) = −σi−(t) and σi+(t)σi−(t) = (1/2)(1 + σiz(t))

we get the following expressions [24]

ip~−1û · e−self(x, t)σz(x, t) = −γ
2
σ+(x, t)

−ip~−1û ·σz(x, t)e−self(x, t) = −γ
2
σ−(x, t)

−2ip~−1û · [e−self(x, t)σ−(x, t)− σ+(x, t)e+
self(x, t)]

= −γ(I(x) + σz(x, t))
(A.19)

where I(x) =
∑Na
i=1 δ(x− xi) and γ = 4 p2~−1ω3

o/(3c
3) is

the A-coefficient.
Using the expressions for e±(x, t) as in (A.16) and

equation (A.19) into the operator Bloch equations (A.9–
A.11) we get

σ.+(x, t) + (
γ

2
− iωo)σ+(x, t) =

ip~−1û · e−o (x, t)σz(x, t) + ε−int(x, t)σz(x, t) (A.20a)

σ.−(x, t) + (
γ

2
+ iωo)σ−(x, t) =

− ip~−1û ·σz(x, t)e+
o (x, t) + σz(x, t)ε+

int(x, t) (A.20b)

σ.z(x, t) + γ(I(x) + σz(x, t)) =

− 2ip~−1û ·
[
e−o (x, t)σ−(x, t)− σ+(x, t)e+

o (x, t)
]

− 2
[
ε−int(x, t)σ−(x, t) + σ+(x, t)ε+

int(x, t)
]

(A.20c)

where ε−int(x, t) = ip~−1û · e−int(x, t) = (ε+
int(x, t))

†, and for
the terms on the r.h.s. in e±o (x, t) and ε±int(x, t) we have
used the property that e(xi, t)δ(x− xi) = e(x, t)δ(x− xi).

The free field annihilation and creation operators
ak,λ(0) and a†k,λ(0) are operating on the state vector char-
acterising the broad-band squeezed vacuum field. For one-
dimensional space the correlation between mode pairs (la-
belled by ω, ω′) of this squeezed vacuum are (cf. [12])

〈a†(ω)a(ω′)〉 = N(ω)δ(ω − ω′) (A.21a)

〈a(ω)a(ω′)〉 = M(ω)δ(ω + ω′ − 2ωp) (A.21b)

and

〈a(ω)〉 = 〈a†(ω)〉 = 0. (A.21c)

The parameter N(ω) represents the average photon num-
ber at frequency ω and M(ω) is a measure of the degree
of squeezing (i.e. the amount of correlation between the
sidebands at frequencies ω, 2ωp−ω where ωp is the carrier
(central) frequency of the squeezed vacuum [8–12]) with
|M(ω)| ≤

√
N(ω)(N(ω) + 1), (generalisations to isotropic

3-dimensional correlated models were discussed in [34];
and references therein).

Having specified the correlation functions for the
squeezed vacuum, we first outline the derivation for the
mean atomic inversion σ̄z(x, t) = 〈σz(x, t)〉 where | 〉 =

|atom〉⊗ |sq.vac.〉 is the combined state for the atoms and
the (free) squeezed vacuum field. We integrate formally
the operator equation for σ+(x, t), equation (A.20a) and
substitute the result into the square bracket containing the
free field operators terms e±o in equation (A.20c). Up to
O(e2) (e is the electron charge, where p is proportional to
the electronic charge) and within statistical decorrelation
between field and matter terms which results in isolating
the free field correlation functions equation (A.21) (cf. [34]
for detail) we get

σ̄.z(x, t) + γ(I(x) + σ̄z(x, t)) =

−A− 2〈
[
ε−int(x, t)σ−(x, t) + σ+(x, t)ε+

int(x, t)
]
〉 (A.22)

where

A = 2p2~−2u ·
[∫ t

0

e−ητ σ̄z(x, t′)

× 〈e−o (x, t′)e+
o (x, t′)〉dt′ + c.c.

]
; (A.22a)

η = γ/2 − iωo, τ = t − t′. With the free fields e±o (x, t′),
equation (A.13), and the use of the correlation func-
tions (A.21a, A.21c) and after performing the integra-
tion over ωk in the usual continuum limit and within the
Markov approximation [34] we get finally

A = −2γNσ̄z(x, t) (A.23)

where N = N(ω = ωo). Thus (A.22) becomes

σ̄.z(x, t) = −γ(I(x) + (1 + 2N)σ̄z(x, t))

− 2
[
〈ε−int(x, t)〉σ̄−(x, t) + c.c.

]
(A.24)

where in (A.24) we have (semiclassically) decorrelated
the terms 〈ε−int(x, t)σ−(x, t)〉 ≈ 〈ε−int(x, t)〉σ̄−(x, t) and
〈σ+(x, t)ε+

int(x, t)〉 ≈ 〈ε+
int(x, t)〉σ̄+(x, t).

Following the same procedure, by formally integrating
equation (A.20c) for σz(x, t) and inserting the result into
equation (A.20a) for σ+(x, t) and the use of the squeezed
vacuum correlations (A.21b) and up to O(e2) and within
the same approximations as before we get finally [30,34]

σ̄.+(x, t) = −(
γ

2
(1 + 2N)− iωo)σ̄+(x, t)

− γM(x)e2iωptσ̄−(x, t)− 〈ε−int(x, t)〉σ̄z(x, t) (A.25)

where M(x) = Me−2ikpx (kp = ωpc
−1) for a correlated

squeezed vacuum along the x-direction orthogonal to the
cavity z-axis [35]. Note M(x) = constant, say M , with
respect to any variation along the z-direction (the case of
our concern). Thus with this in mind, and in a rotating
frame at the input field frequency ωd and for ωp = ωd the
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c-number Bloch equations (A.24, A.25) are of the form

σ̄.+(x, t) = −(
γ

2
(1 + 2N) + iδ)σ̄+(x, t)− γMσ̄−(x, t)

− 〈ε−int(x, t)〉σ̄z(x, t)
=
(
σ̄.−(x, t)

)∗ (A.26a)

σ̄.z(x, t) = −γ(I(x) + (1 + 2N)σ̄z(x, t))

− 2
[
〈ε−int(x, t)〉σ̄−(x, t) + c.c

]
. (A.26b)

Finally the c-number equations (A.26) are to be ensemble
averaged over the sites xi [24,30] by setting

J±(x, t) = n−1
o 〈σ̄±(x, t)〉Avr.

2Jz(x, t) = n−1
o 〈σ̄z(x, t)〉Avr. (A.27)

where no ≡ 〈
∑Na
i=1 δ(x−xi)〉Avr. ≡ 〈I(x)〉Avr. is the mean

number density of atoms obtained after an ensemble aver-
age over the sites xi ∈ V and 〈σ̄±,z(x, t)〉Avr. are ensemble
averages of the quantum mean values of the full opera-
tors σ±,z(x, t) scaled to a single atom. For the ensemble
average, concerning products like〈
〈ε−int(x, t)〉σ̄z(x, t)

〉
Avr.

=

ip2~−1

∫
V

(x 6=x′)

dx′ûû : F(x, x′;ωc) 〈σ̄+(x′, t)σ̄z(x, t)〉Avr.

we set

〈σ̄+(x′, t)σ̄z(x, t)〉Avr. = g(r)J+(x′, t)(2Jz(x, t)) (A.28)

where g(r) is the two-body correlation function [28]

g(r) = n−2
o

〈
Na∑
i,j=1
i6=j

δ(x− xi)δ(x′ − xj)
〉

Avr.

(A.29)

and r = |x− x′|.
Correlation functions of all orders appear in the linear

dielectric theory [28,33], and for low atomic density we
can take g(r) ≈ 1 [25,33].

Thus with the ensemble average as described and
for low atomic density, the ensemble averaged Bloch
equations (A.26) are exactly the equations (2b, 2c), with
〈ε+

int(x, t)〉 identified (after ensemble average) as α, i.e.

α = −inop2~−1

∫
V

(x 6=x′)

dx′ûû : F∗(x, x′;ωc)J−(x′, t).

(A.30)

As noted this internal propagating cavity field satis-
fies the full Maxwell’s wave equation driven by −4πc−2

∂2J−(x, t)/∂t2. Within the slowly varying approximation
in space and time (e.g. [9]) the full Maxwell’s wave equa-
tion is replaced by the reduced equation (2a) for the field
α(z, t).

Appendix B

In this appendix we show that in the dispersive case where
both |θ|, |δ| � 1 and for C � 1 and small N the boundary
of the bistable region is approximated by one of the two
hyperbolas of equation (20).

If |θ| � 1, |δ| � 1 and N is small then |D1| � 1,
|D1θ| � 1 and the condition (10b) which requires that
f(θ, δ) > 0, gives from equation (11) that,((

CD2
1

D2

)
+ θD1

)3

− 27
4

(
CD2

1

D2

)
(θD1)2 ≥ 0 (B.1)

which simplifies to(
2
CD2

1

D2
− θD1

)2(
CD2

1

4D2
+ θD1

)
≥ 0. (B.2)

So, from (B.2) we have,

θD2

D1
≤ 2C if D1θ > 0 (B.3a)

and

θD2

D1
≥ −C

4
if D1θ < 0. (B.3b)

For |δ| � 1, we have

D2

D1
=

(1 + δ2)(1 + 2N)

δ

[
1 +

2|M |
δ

sinφ
]

≈ (1 + 2N)(δ − 2|M | sinφ) (B.4)

which is a good approximation as |M | ≤
√
N(N + 1) and

N small. Thus the conditions (B.3) reduce to

θ(δ − δo) ≤
2C

1 + 2N
; D1θ > 0 (B.5a)

θ(δ − δo) ≥
−C

4(1 + 2N)
; D1θ < 0, (B.5b)

where δo = 2|M | sinφ. For consistency equation (B.3) re-
quire that C � 1. In the normal vacuum case (N = M =
0) these reduce to

θδ ≤ 2C if δθ > 0 (B.6a)

θδ ≥ −C
4

if δθ < 0 (B.6b)

as given in [18].
Conditions (B.5) define a region of bistability whose

boundary is approximated by the two hyperbolas,

θ(δ − δo) =
2C

1 + 2N
if D1θ > 0,

θ(δ − δo) =
−C

4(1 + 2N)
if D1θ < 0. (B.7)
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In the regions of the plane where (B.5a) holds, and from
equation (9), we have Xinf ≥ 0. Equality holds on the
hyperbolic boundary of this region so bistability is possi-
ble within the region enclosed by the hyperbola. Similarly
Xinf > 0 in the region of the plane where (B.5b) holds.

Note that, these hyperbolas are approximate boundary
of the bistability region if |θ| � 1, |δ| � 1. In practice, the
boundary will cut the θ- and δ-axes. Now, we determine
these points of intersection for C � 1 and small N .

For θ = 0 the condition (10b) (i.e. f(θ, δ) > 0) gives

(CD2
1 −D2)3 − 27

4
CD2

2D
4
1 ≥ 0. (B.8)

For C � 1, and small N , CD2
1 � D2 hence (B.8) re-

duces to (
D2

D1

)2

≤ 4
27
C2. (B.8a)

By using the approximation of equation (B.4) for δ � 1
we have then the extrema of δ given by equation (21), i.e.

(δ±)θ=0 = 2|M | sinφ± C
√

4
27

(1 + 2N)−1. (B.9)

Similarly the condition (10b) for D1 = 0 (i.e. δ = −δo)
and C � 1 gives

|θ| ≤
√

4
27

C

D2
(B.10)

where D2 is evaluated at δ = −δo, and the extrema of θ
are then given by equation (22), i.e.

(θ±)δ=−δo = ±C
√

4
27

[
1− 2|M |

1 + 2N
cosφ

]
1 + δ2

o

· (B.11)
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